1

19 The cable $B C$ carries a tension of 750 N . Write this tension as a force \mathbf{T} acting on point B in terms of the unit vectors \mathbf{i}, \mathbf{j}, and \mathbf{k}. The elbow at A forms a right angle.

$$
\text { Ans. } \mathbf{T}=-598 \mathbf{i}+411 \mathbf{j}+189.5 \mathbf{k} \mathbf{N}
$$

1

2	

The square steel plate has a mass of 1800 kg with mass center at its center G. Calculate the tension in each of the three cables with which the plate is lifted while remaining horizontal.

$$
\text { Ans. } T_{A}=T_{B}=5.41 \mathrm{kN}, T_{C}=9.87 \mathrm{kN}
$$

3
The $40-\mathrm{N}$ collar A can slide on a frictionless vertical rod and is attached as shown to a spring. The spring is unstretched when $h=300$ mm . Knowing that the constant of the spring is $560 \mathrm{~N} / \mathrm{m}$, determine the value of h for which the system is in equilibrium.

3
A rectangular plate is supported by three cables as shown. Knowing that the tension in cable $A C$ is 15 lb , determine the weight of the plate.

Dimeusions in inches

A steel rod is bent into a semicircular ring of radius 0.96 m and is supported in part by cables $B D$ and $B E$ which are attached to the ring at B. Knowing that the tension in cable $B D$ is 220 N , determine the components of this force exerted by the cable on the support at D.

5
A container of weight W is suspended from ring A. Cable BAC passes through the ring and is attached to fixed supports at B and C. Two forces $\mathbf{P}=P \mathbf{i}$ and $\mathbf{Q}=Q \mathbf{k}$ are applied to the ring to maintain the container is the position shown. Knowing that $W=1200$ N, determine P and Q.
(Hint: The tension is the same in both portions of cable BAC.)

